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Diffusing acoustic wave spectroscopy
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We have developed a technique in ultrasonic correlation spectroscopy called diffusing acoustic wave spec-
troscopy~DAWS!. In this technique, the motion of the scatterers~e.g., particles or inclusions! is determined
from the temporal fluctuations of multiply scattered sound. In DAWS, the propagation of multiply scattered
sound is described using the diffusion approximation, which allows the autocorrelation function of the tempo-
ral field fluctuations to be related to the dynamics of the multiply scattering medium. The expressions relating
the temporal field autocorrelation function to the motion of the scatterers are derived, focusing on the types of
correlated motions that are most likely to be encountered in acoustic measurements. The power of this tech-
nique is illustrated with ultrasonic data on fluidized suspensions of particles, where DAWS provides a sensitive
measure of the local relative velocity and strain rate of the suspended particles over a wide range of time and
length scales. In addition, when combined with the measurements of the rms velocity of the particles using
dynamic sound scattering, we show that DAWS can be used to determine the spatial extent of the correlations
in the particle velocities, thus indirectly measuring the particle velocity correlation function. Potential appli-
cations of diffusing acoustic wave spectroscopy are quite far reaching, ranging from the ultrasonic nondestruc-
tive evaluation of the dynamics of inhomogeneous materials to geophysical studies of mesoscopic phenomena
in seismology.

DOI: 10.1103/PhysRevE.65.066605 PACS number~s!: 43.35.1d, 43.20.1g, 43.90.1v, 82.70.Kj
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I. INTRODUCTION

The scattering of ultrasonic waves, especially from o
jects buried inside optically opaque materials, has been u
extensively to image internal structures in inhomogene
media and to probe their physical properties@1#. For ex-
ample, many applications have been demonstrated in
acoustic microscopy@2# and medical imaging, ranging from
three-dimensional visualizations of subsurface details in
bon nanotubes to images of fetuses and blood flow in hum
beings@3#. However, these methods break down in mater
where strong multiple scattering occurs, since multiple sc
tering scrambles the directions in which the waves are tr
eling and exact information on the location of the scatter
objects is lost. In this case, images of the scattered wave
are dominated by acoustic speckle, which arises from
interference between the scattered waves that have trav
different multiple scattering paths through the sample. Th
speckles can completely obscure static images of the sca
ers, and different approaches are needed to extract mea
ful information from the scattered waves. One such appro
is to use the fluctuations that occur in the speckle pat
when the scatterers are moving to investigate the syste
dynamics. This is the approach followed in this paper, wh
we describe an ultrasonic technique, called diffusing acou
wave spectroscopy~DAWS!, and demonstrate its potentia
for investigating the dynamics of strongly scattering me
over a wide range of time and length scales. While br
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accounts of the technique have been published previo
@4–6#, the aim of this paper is to give a sufficiently comple
description of DAWS to facilitate its practical implement
tion in a wide range of possible applications.

Diffusing acoustic wave spectroscopy determines the
namics of strongly scattering media from the temporal flu
tuations of ultrasonic waves that are scattered many tim
before leaving the sample. This technique is made feas
by recent progress in understanding the diffusion of multi
scattered ultrasonic waves, an approach that we have sh
to be extremely powerful and remarkably accurate for
scribing acoustic wave transport under these conditions@7,8#.
By modeling the ultrasound propagation using the diffus
approximation, we show how this technique determines
relative motion of the scatterers from the autocorrelat
function of the field fluctuations. Since multiply scattere
sound is used, each scatterer need move only a minute
tion of a wavelength for its motion to be detected, givin
extremely high sensitivity to small displacements of the sc
terers. This technique is analogous to diffusing wave sp
troscopy~DWS! using light @9,10#, which has been used t
study a wide range of systems and physical phenome
ranging from particle sizing to measurements of particle m
tion on angstrom length scales, and from the aging of foa
to high frequency rheology@11,12#. However, the motion of
wavelength-sized particles in ultrasonics is generally qu
different from that measured using light, necessitating a ca
ful examination of the correlation function from which th
particle dynamics are determined. The experimental
proach is also different, largely because of the relative e
with which pulsed measurements can be performed in ul
sonics, an approach that leads to a significant simplifica
in the measurement of particle dynamics from the tempo
correlation function. We illustrate the feasibility of DAWS
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by showing how it can be used to measure the relative m
square displacement and local strain rate of fluidized sus
sions of particles, where this technique has recently led
valuable insights into their complex flow behavior@4#.

The outline of this paper is as follows. In Sec. II, w
derive the relationship between the field autocorrelat
function that is measured experimentally and the rela
mean square displacement of the scattering particles.
temporal evolution of the relative mean square displacem
is described in systems with partially correlated parti
flows, and the approximate relationship between the lo
relative velocity and strain rate is discussed. Since it is u
ally best to perform diffusing acoustic wave spectrosco
measurements in pulsed mode, the main emphasis is
pulsed DAWS, although the autocorrelation function f
continuous-wave~cw! DAWS is also presented. Section I
describes how DAWS experiments are performed. The m
mum multiple scattering path length required for accur
DAWS measurements is determined, and the results
pulsed and cw DAWS are compared to illustrate the rela
advantages of the two approaches. In Sec. IV, represent
data for the experiments performed on fluidized suspens
of particles are presented in order to illustrate the consid
able range of dynamic information that can be obtained us
DAWS. Our main conclusions are stated in Sec. V.

II. THEORY

In diffusing acoustic wave spectroscopy, it is the tempo
fluctuations of the multiply scattered pressure fieldc(t) that
are measured experimentally, and the motion of the sca
ing particles can be determined directly from the field au
correlation function,

g1~t!5

E c~ t !c* ~ t1t!dt

E uc~ t !u2dt

. ~1!

To calculateg1(t), we model the propagation of ultrasoun
through the material using the diffusion approximation,
which the multiply scattered ultrasonic waves travel throu
the sample in a random-walk process characterized by
transport mean free pathl * , the energy velocityve , and the
diffusion coefficientD5vel * /3. In what follows, we will
discuss the transmission geometry in which the gener
and detector are on opposite sides of the sample, altho
the method can be readily extended to treat the reflec
geometry as well. For the ultrasonic experiments descri
below, the scattering is almost isotropic on average, so
l * > l s[ l , wherel s is the scattering mean free path. We b
gin with the isotropic scattering case by considering a sin
random-walk path ofn steps through the sample having to
lengths5(n11)l @13#. This path’s contribution to the deca
of g1(t) is determined by the total phase change result
from the motion of all the scatterers in the path. From Fig
it is clear that this phase change can be written as
06660
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Df (n)~t!5 (
p50

n

Dfp~t!5 (
p50

n

@kW p•$DrWp11~t!2DrWp~t!%#

5 (
p51

n21

kW p•DrW rel,p~t,l !1@kW0•DrW1~t!2kWn•DrWn~t!#,

~2!

wherekW p is the wave vector of the wave scattered from t
pth to the (p11)th particle, andDrW rel,p(t)5DrWp11(t)
2DrWp(t) is their relative displacement during the time inte
val t. The last two terms represent the motion of the first a
last scatterer relative to the source (p50 term! and detector
(p5n term!, respectively; for largen their contribution is
small and can be neglected. By definition, the average
tance between particles in the scattering path is given

^urWp112rWpu&5 l . The phase changeDf (n)(t) can also be
written in terms of the scattering wave vectorqY p5kY p

2kY p21 as Df (n)(t)5(p51
n qY p•DrYp(t), but this commonly

used form in DWS is not appropriate when the motion
adjacent scatterers in the path is correlated, as is likely
occur for the large millimeter-sized particles that scatter
trasonic waves strongly. The total field autocorrelation fun
tion is obtained by averaging over all paths withn events and
summing over all path lengths~i.e., all n) that contribute to
the total field measured at the detector, giving

g1~t!5(
n

g1
n~t!5(

n
P~n!^e2 i Df(n)(t)&. ~3!

Here the factorP(n)[^uc (n)(0)u2&/^uc2u& is the fraction of
the total scattered sound intensity in paths havingn scatter-
ing events. In a continuous-wave experiment, the summa
in Eq. ~3! extends over alln. However, in a pulsed experi
ment, the average path lengths is selected by measuring th
field fluctuations at a fixed sampling timets5s/ve after the
input pulse is incident on the sample, and the summatio

FIG. 1. Segment of a multiple scattering path with moving sc
terers. Solid spheres are att5t, open spheres are att50.
5-2
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DIFFUSING ACOUSTIC WAVE SPECTROSCOPY PHYSICAL REVIEW E65 066605
restricted to include only those paths whose length diff
from the average by the pulse width (Dt/ve). In particular,
for a narrow pulse,P(n) is essentially constant in the sum
mation overn and the normalized field correlation functio
takes on the relatively simple form

g1~t!.^e2 i Df(n)(t)&. ~4!

Equation~4! shows immediately one of the great advantag
of pulsed measurements, namely, thatg1(t) does not depend
on the effects of boundary conditions or absorption in
diffusive propagation of ultrasound through the sample.

For largen it is a good approximation to assume that t
successive phase shiftsDfp(t) in Eq. ~2! are uncorrelated
Then Eq.~4! becomes

g1~t!.^e2 i kW•DrWrel(t,l )&n21^eikW•DrWrel(t,R)&, ~5!

where the second term gives the contribution from the re
tive motion of the first and last particles in the scatteri
path, which are separated by a distanceR. In a transmission
experiment,R;L, whereL is the sample thickness. Equatio
~5! can be further simplified to

g1~t!.expF2
n

2
^@kW•DrW rel~t,l !#2&G

3expF2
1

2
$^@kW•DrW rel~t,R!#2&2^@kW•DrW rel~t,l !#2&%G ,

~6!

where we have used a cumulant expansion, retaining o
the leading nonvanishing term, which is the second cumu

^@kW•DrW rel(t)#2&. Higher-order terms in the cumulant expa
sion are negligible since, for the range of times over wh
g1(t) can be reliably measured, the phase fluctuations
small for any step along any path having largen. In Eq. ~6!,
^•••& denotes both a configurational average over the cha
in position of the scatterers and an average over all poss
wave vectorskW p . When the directions ofkW andDrW rel are not
correlated, the average in Eq.~6! is easy to perform, giving

g1~t!.expF2
nk2

6 S ^Dr rel
2 ~t,l !&1

1

n
$^Dr rel

2 ~t,R!&

2^Dr rel
2 ~t,l !&% D G . ~7!

The term in curly brackets will be zero if the motion o
particles is uncorrelated for all distances greater than
equal to l, since then^Dr rel

2 (t,R)&5^Dr rel
2 (t,l )&. Further-

more, in this case of uncorrelated motion,^Dr rel
2 (t,l )&

is twice the single-particle mean square displacem
^Dr 2(t)&, leading to the form often used in DWS for diffu
sive motion@9,10#. However, even when this condition is n
satisfied, the term in curly brackets in Eq.~7! at most gives a
contribution that is of order 1/n times smaller than the firs
term and can be neglected for large enoughn, giving, to a
good approximation, the simple relation
06660
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g1~t!.expF2
nk2

6
^Dr rel

2 ~t,l !&G . ~8!

Here, in a pulsed experiment,n is determined by the path
length and is directly related to the amount of time that
ultrasonic waves have spent traveling through the sampl

When the directions of the wave vector and relative me
square displacement are correlated, the average magnitu
DrW rel,p(t,l ) projected along the wave vectorkW p depends on
the angle up between DrW rel,p(t,l ) and kW p . As a result,
the average of ^(kW p•DrW rel,p)2&5^(kpDr rel,p(up)cosup)

2&
5ak2^Drrel

2 &/3 is reduced by a numerical factora, which
measures the fraction of the relative mean square displ
ment of the particles detected by DAWS. For example,
factora is reduced from 1 for uncorrelated motion to 0.6 f
simple shear flow@14#, while in the extreme case of a pur
rotation,a 5 0, since the component ofDrW rel,p(t,l ) parallel
to the wave vector between adjacent scatterings is zer
this case@15#. By contrast, for the fluidized suspensions i
vestigated in this paper, the motion is almost certainly unc
related over long measurement times; thus the magnitud
a is expected to be quite close to unity in this case, allow
us to use Eq.~8! directly. In general, as shown by Bicout an
Maynard@15#, this effect can be described quantitatively
terms of the temporal evolution of the strain tensor

« i j ~t!5
1

2S ]ui~t!

]r j
1

]uj~t!

]r i
D ~9!

that characterizes the local flow patterns. HereuW (t)
5DrW(t) is the change in the position of thepth particle
located at positionrW , and i , j representx, y, andz. By ap-
proximating the relative displacement of the particles by
leading term of a series expansion, we obtain

DrW rel,p5DrWp112DrWp' l ~ êp•¹!uW , ~10!

where êp5ex
(p) î 1ey

(p) ĵ 1ez
(p)k̂ is a unit vector in the direc-

tion of kW p . The phase changeDfp(t) then becomes~ignor-
ing the effect of the first and last scattering events!

Dfp~t!5kl(
i , j

ei
(p) ej

(p) « i j ~rWp ,t!. ~11!

Since for isotropic scattering theêp are randomly distributed
^Dfp(t)& is simply obtained by averaging each term in E
~11! over the unit sphere, giving

^Dfp~t!&5
1

3
klK (

i
« i i L . ~12!

Thus, only the sum of the diagonal terms in the strain ten
survives in the ensemble average, showing that^Dfp(t)&
50 unless there is a uniform dilation or compression of
entire sample. Therefore, as stated above, for incompres
media the decay ofg1(t) is determined bŷDfp

2(t)&, which
is now given by
5-3
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^Dfp
2~t!&5

2~kl !2

15 F K S (
i

« i i D 2L 12(
i , j

^« i j
2 &G . ~13!

The first term in Eq.~13! describes the effect of fluctua
tions in the density of the medium, due to local variations
the number of particles per unit volume, while the seco
term is simply the sum of all the mean square tensor stra
Thus the contribution to the relative mean square displa
ments of the particles that is measured in DAWS can
written in terms of the average strain«̄ as

^Dr rel,meas
2 ~t,l !&5 «̄2l 2, ~14!

where

«̄2[
2

5 F K S ( « i i D 2L 12(
i , j

^« i j
2 &G . ~15!

To calculateg1(t) from a model for the strain field when th
strains are inhomogeneously distributed throughout
sample volume,«̄2 should also be weighted by the spat
distribution of diffusing sound in the medium for paths
lengths @15#.

When the scattering is anisotropic, so thatl * . l s , all of
the expressions forg1(t) in this section still hold providing
that l is replaced everywhere byl * . This result was first
shown in DWS for particles undergoing random Browni
motion @9,10#; it has also been demonstrated more recen
for particles in flows, so long as the strain and velocity fie
vary slowly on the scale of the transport mean free path@17#.
Thus, the field autocorrelation function can be written as

g1~t!'expF2
nk2

6
^Dr rel

2 ~t,l * !&G ~16!

or

g1~t!'expF2
nk2l * 2

6
«̄2~t,l * !G . ~17!

Here the number of scattering events in the path,n's/ l *
21's/ l * 5ve ts / l * is determined by the sampling timets ,
given by the corresponding time that the ultrasound has s
diffusing through the sample.
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For suspensions of particles with dimensions compara
to the ultrasonic wavelength at megahertz frequencies,
Peclet number Pe@1, so Brownian motion is negligible an
the motion of the particles is expected to be ballistic ov
short time intervals. ThenDrWp(t)5VW pt, and the relative
mean square displacement^Dr rel

2 (t)&5^DVrel
2 & t2 provides a

measure of the local variance in the relative velocity of t
particles. In this regime, the strain is also proportional tot, so
that the phase fluctuationŝDfp

2(t)& can be conveniently
expressed in terms of the strain rate tensor,g i j 5« i j /t
5 1

2 (]Vi /]r j1]Vj /]r i) @15#. Thus, DAWS can also be use
to measure the average local strain rateḠ5 «̄/t'DVrel / l * ,
whereDVrel5A^DVrel

2 &.
Information on the spatial correlations of the particle m

tions can be obtained by varying the length scalel * at which
^Dr rel

2 (t)& and ^DVrel
2 & are measured. The relative mea

square displacement of particles separated byl * can be ex-
pressed as

^Dr rel
2 ~ l * !&5^@DrW~ l * !2DrW~0!#2&

52^Dr 2&22^DrW~ l * !•DrW~0!&. ~18!

At early t, where the motion is ballistic, this equation can
written in terms of the variance of the velocities as

DVrel
2 ~ l * !52Vrms

2 F12
^VW ~0!•VW ~ l * !&

^uV~0!u2&
G , ~19!

whereVrms is the root mean square velocity, which can
measured using dynamic sound scattering~DSS! @4#. Equa-
tion ~19! shows that the length scale dependence of the r
tive mean square velocity of the particles is intimately
lated to the instantaneous spatial velocity correlat
function ^VW (0)•VW ( l * )&/^uVW (0)u2&, and that this correlation
function can be probed by varyingl * in diffusing acoustic
wave spectroscopy.

To calculate the correlation functiong1
(cw)(t) for

continuous-wave DAWS, we replace the sum in Eq.~4! by
an integral over all path lengthss, where path length distri-
bution functionP(s) is given by the solution of the diffusion
equation, taking into account the appropriate boundary c
ditions and the effects of absorption@18#. For a slab-shaped
sample cell with boundaries having an average reflectiv
R, g1

(cw)(t) in transmission is given by
nd
re
gh the
g1
(cw)~t!.E P~s!expF2

s

l *
k2^Dr rel

2 ~t!&/6Gds5
~L12C!/~z01C!$sinh~z0Aq21a2!1CAq21a2cosh~z0Aq21a2!%

@11C2~q21a2!#sinh~LAq21a2!12CAq21a2cosh~LAq21a2!
,

~20!

whereq25k2^Dr rel
2 (t)&/2l * 2, a251/Dta , ta is the absorption time,z0; l * is the distance inside the sample where sou

diffusion ‘‘begins,’’ andC5 2
3 l * (11R)/(12R). Thus, invertingg1

(cw)(t) to determine the motion of the scatterers is mo
complicated for cw DAWS, and requires a more complete description of the diffusive propagation of sound throu
sample.
5-4
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III. EXPERIMENT

To demonstrate how DAWS can be realized experim
tally, fluidized beds were constructed in which 0.875-m
diameter glass beads were suspended in a mixture of 7
glycerol and 25% water@4,5#. The liquid was pumped up
wards at a constant velocityVf to counterbalance the grav
tational sedimentation of the beads, different values ofVf
being selected to vary the volume fraction of the partic
between 0.08 and 0.50. For this choice of glass bead di
eter and liquid viscosity, the particle Reynolds number, Rp
52ar fV0 /h, ranges from 0.3 at 23 °C to 0.9 at 27 °C. He
r f andh are the fluid density and viscosity, respectively,a is
the particle radius, andV0 is the Stokes velocity. In this
paper, we show representative results obtained using se
different fluidized beds, although most of the data were ta
in a bed with height, width, and thickness of 450, 178, a
12.8 mm, respectively. Uniform flow at the bottom of th
beds was established using a distributor of close-packed
tionary beads.

The majority of our measurements of the temporal cor
lation function were performed using pulsed techniqu
thereby taking advantage of the higher power levels and
ter signal-to-noise characteristics of pulsed ultrasonic exp
ments relative to cw methods. We used a transmission ge
etry, in which the incident pulse was an excelle
approximation to a plane wave over the cross section of
sample, and the transmitted multiply scattered field was
tected in a single~near-field! speckle using a miniature hy
drophone@7#. For pulsed measurements, the full time dep
dence of the scattered field transmitted through the sam
after each incident pulse can, in principle, be measured,
ing a series of time-domain pictures of the scattered fi
wave form, recorded at each repetition of the incident pu
As an illustrative example, we show in Fig. 2 a sequence o
transmitted wave forms taken in the fluidized bed. The c
rier frequency in the pulse was centered atf 52.3 MHz,

FIG. 2. Sequence of transmitted wave forms, consisting
waves that have been multiply scattered in the sample afte
1-ms-wide input pulse is incident on the front face of the samp
The input pulse is centered att50 s. As the time for the multiply
scattered waves to travel through the sample increases and the
tered path lengths become longer, the rate at which the scat
field becomes decorrelated on subsequent pulse repetitions
creases.
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where the ultrasonic wavelengthl is comparable to the par
ticle radiusa, and strong multiple scattering is evident fro
the long range of transit times taken by the input pulse
reach the detector. Since the scattering particles are mov
the wave form changes with each subsequent acquisitio
the scattered field, allowing their dynamics to be probed o
time scale determined by the inverse of the pulse repeti
frequency. In this example, the pulse repetition rate was
ms, allowing the fluctuations in the transmitted field to
easily seen, and showing clearly that the fluctuation rate
creases with transit time through the sample as the mult
scattering paths become longer. This figure shows gra
cally how the sensitivity of the measurements to small m
tions of the scatterers can be controlled by selecting the s
pling time and hence the path length—the longer the pa
the greater the sensitivity to small displacements of the p
ticles, since the sound scatters more times before leaving
sample and each scattering particle has to move a sm
fraction of a wavelength to achieve the same accumula
phase change of the scattered field.

To optimize the rate at which the fluctuations can
probed in pulsed DAWS, it is advantageous to measure
field fluctuations at a single sampling timets after the input
pulse is incident on the sample, rather than to digitize
entire wave form. This is achieved by using a boxcar in
grator to sample the scattered field over a very narrow t
interval, chosen to be much less than the ultrasonic perio
that the true field at this instant is accurately measured.
sampled field at this point on the wave form is then digitiz
for each repetition of the pulse using the gated digitizi
option of a PC oscilloscope card. In these measurements,
critical to synchronize the acquisition rate of the oscillosco
to the pulse repetition frequency, and the use of gated d
tizing was found to be more reliable than attempting to s
chronize the time base of the digital oscilloscope and
pulse repetition period. The use of the boxcar dramatica
increases the rate at which data can be acquired in succe
repetitions of the pulse, and allows the temporal fluctuatio
of the scattered field to be sampled at times separated
values that approach the fundamental limit imposed by
time taken for sound to diffuse across the sample, typica
50–100 ms in the current experiments. Although th
method does not allow the amplitude and phase of the s
tered fields to be independently determined, it does allow
field correlation function to be calculated directly from th
oscilloscope data. Since any point on the scattered w
form can be selected by shifting the gate position on
boxcar integrator, the main advantages of pulsed diffus
acoustic wave spectroscopy can all be realized with this r
tively simple technique.

Typical results using this method are shown in Fig. 3.
Fig. 3~a!, a single snapshot of the transmitted field is sho
and compared with the input pulse. Two sampling timests at
which the field is measured by the boxcar on subsequ
repetitions of the input pulse are shown by the vertical
rows. By using a pulse repetition frequency of 1 kHz, t
field fluctuationsc(t) were measured every millisecond, giv
ing the results shown in Fig. 3~b!, where the fluctuations a
these two sampling times are compared over a 2-s time

f
a
.

cat-
red
in-
5-5
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terval. Generally, a sequence of 131 000 pulses was u
allowing the variation in the fieldc(t) to be followed over
'2 min, long enough to have sufficiently good statistics
determine the correlation function with excellent sensitiv
The temporal autocorrelation functions ofc(t) were calcu-
lated from the digitized field fluctuations using fast Four
transforms~FFT! and the correlation theorem, which stat
that the Fourier transform of an autocorrelation function
equal to the product of the Fourier transform of the funct
and its complex conjugate@19#. For long record lengths, thi
FFT method is much less computationally intensive than
brute force calculation using the relation

g1~t!5

E c~ t !c* ~ t1t!dt

E uc~ t !u2dt

'

1

n2 j (
i 51

n2 j

c~ t i !c* ~ t i2t j !

1

n (
i 51

n

uc~ t i !u2
.

~21!

FIG. 3. ~a! Input ~left! and transmitted~right! pulses. The verti-
cal arrows indicate two different times at which the field is sampl
The fields are normalized so that the peak value of the input puls
equal to 1.~b! The field fluctuations measured at these two sa
pling times. The solid curve corresponds tots517.8 ms, while the
dashed curve corresponds tots527.8 ms. ~c! The field autocorre-
lation functions calculated from the field fluctuations.~d! The rela-
tive mean square displacements of the particles as a functio
time.
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Note that these measurements give the field autocorrela
functiong1(t) directly. To further improve the statistics, th
procedure was repeated 50 times and the resulting correla
functions then averaged together. Results forg1(t) at the
two sampling times selected in Figs. 3~a! and 3~b! are shown
in Fig. 3~c!, indicating that the correlation function decay
more quickly for the longer path lengths probed at the lar
sampling time, as expected from Eq.~16!.

To determinê Dr rel
2 (t)& or «̄2(t) from g1(t), the param-

eterss5vets , l * , andk must be determined from measur
ments of the diffusive and ballistic transport of ultrasou
through the sample@7,8,20–22#. For suspensions of solid
particles in a fluid, we have shown that it is a good appro
mation to takeve'vg and l * ' l s , so that a first-order esti
mate of the required ultrasonic propagation parameters
be obtained from ballistic measurements of the scatte
mean free pathl s , the phase velocityvp (52p f /k), and the
group velocityvg . More accurate results can be obtained
measuringD and l * directly from pulsed and cw experi
ments on the diffusive propagation of ultrasound through
sample, using the methods described in Ref.@7#. Using the
values ofve , l * , andk determined in these experiments, w
use Eq.~16! to invert the correlation functions in Fig. 3~c!
and determine the time dependence of^Dr rel

2 (t)&, as shown
in Fig. 3~d!. Note that the data taken at the two differe
sampling times give essentially the same values
^Dr rel

2 (t)&, demonstrating that the dependence on path len
is correctly described by our model for the correlation fun
tion.

To explore the path length dependence in more detail,
have taken measurements at several different sampling t
or path lengths. By comparing the relative mean square
placements calculated from our data using Eq.~16!, we can
test whether the correction term introduced by the first a
last scattering events is negligible. In Fig. 4, the relat
mean square velocities extracted from these data sets
plotted versus the number of scattering events, for sam

.
is
-

of

FIG. 4. The rms relative velocity determined from the expe
mental data using Eq.~16! as a function of the number of scatterin
eventsn ~symbols!. The curves represent the sum of the actual r
relative velocity, as measured from long path lengths, plus the
rection term given in Eq.~7!, which is fitted to the experimenta
data thereby determininĝDVrel

2 (R)&.
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with two different volume fractions. Forn.20 the differ-
ences caused by the 1/n correction term in Eq.~7! are small
and not significant when compared to other sources of
certainty ~e.g., in the transport mean free path and ene
velocity!. However, asn gets smaller, the influence of th
correction term becomes evident. To investigate the ma
tude of the correction term, we fit the form expected fro
Eq. ~7!, treating^DVrel

2 (R)&5^Dr rel
2 (R)&/t2 as the unknown,

to obtain the solid and dashed curves in Fig. 4. As an
ample of the results of these fits, we find for the 50% volu
fraction data, that the fitted value ofDVrel(R) is 5.0 mm/s;
this value is between our independent measurements, u
DAWS and DSS, ofDVrel53.1 mm/s at a separation equ
to the sample thickness of 5.4 mm, andDVrel5A2Vrms

57.6 mm/s at separations larger than the correlation len
(j522 mm). Thus, the value ofDVrel(R) extracted from
the fit is reasonable, since the average distance betwee
first and last scattering events should be somewhat la
than the sample thickness. It should be noted that these
sults imply that pulsed DAWS can be used on samples wh
thickness is less than the four mean free paths that
needed for the diffusion approximation to accurately de
mine the distribution of path lengths@24#. One need only se
the sampling time, or equivalently the path length, to be lo
enough that the detected ultrasound has undergone more
20 scattering events. This is in contrast to the situation w
continuous wave DAWS or DWS, where in order to exam
thin samples one must go beyond the diffusion approxim
tion, for example, by using radiative transfer theory or t
telegrapher equation, to take the short paths into acco
@25,26#.

We have also investigated the relative motion of the sc
tering particles using continuous waves instead of pulse
method that is similar in many respects to that usually e
ployed in diffusing wave spectroscopy with light. The pote
tial advantages of cw DAWS are twofold: first, the ultrason
waves are monochromatic, thus avoiding possible compl
tions in the analysis in cases where the ultrasonic mean
path or energy velocity are strongly frequency depend
and second, it is possible to measure faster dynamics, s
the fluctuations can be measured continuously without w
ing for the next pulse to propagate through the sample. H
ever, these advantages are often outweighed by the incre
complexity of the correlation function in cw DAWS, limiting
its usefulness to those cases where fast dynamics or
large ultrasonic dispersion makes pulsed techniques les
liable. To directly measure the field fluctuations in c
DAWS, the boxcar is phase locked so that the scattered
is measured at regular time intervals that are exact multi
of the period of the input wave. Thus the true fluctuations
the field, due to the combined effects of the fluctuations
amplitude and phase, are measured without the trivial con
bution due to the exp(ivt) oscillations of the carrier wave
Having measured the field fluctuations, the cw field autoc
relation function is determined using the same FFT met
described above for pulsed DAWS.

By determiningg1
~cw!(t) for these data, and solving fo

^Dr rel
2 (t)& using Eq.~20!, we can compare the values of th
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relative mean square displacements obtained from cw
pulsed DAWS. Our results are shown in Fig. 5, where the
and pulsed data are represented by the solid and open
bols, respectively. Note the increased sensitivity of the
data to the early time motion. Good agreement between
two methods is found, especially for times between 1023 and
1022 s, where they give essentially the same rms veloc
At later times the agreement is not as good, most likely d
to the increased contributions to the cw autocorrelation fu
tion of short paths through the sample at large correlat
times (g1 decays more slowly for short paths than for long
paths!, since these paths are not as well modeled by
diffusion approximation@25#. Nonetheless, continuous-wav
DAWS allows for the measurement of faster particle dyna
ics than pulsed techniques, and gives accurate results o
relative mean square displacements at short times where
technique is most needed.

IV. RESULTS AND DISCUSSION

Figure 6 shows typical results for the variance of relat
mean square particle displacements measured by DAW
fluidized suspensions. Here we show the time dependenc
^Dr rel

2 (t)& for several volume fractions in two cells havin
different thicknesses. The data for the two cells are in exc
lent agreement, except for the data atf50.40, where the
difference in^Dr rel

2 (t)& can be entirely accounted for by
measured difference in temperature. These measurem
were performed at a frequency of 2.35 MHz, for which t
ultrasonic wavelengthl in the suspension varied slightl
from 0.68 to 0.75 mm as the volume fractionf was in-
creased from 0.18 to 0.50. Note the range of distan
probed by this technique: these range from'l/2 down to
l/1000 at the earliest times, illustrating the extremely go
sensitivity of DAWS to small relative displacements of th
particles. At early timeŝDr rel

2 (t)& varies quadratically with
time, as expected when the particles move in ballistic traj

FIG. 5. Comparison of pulsed~open symbols! and cw ~closed
symbols! DAWS measurements of the relative mean square
placement at two different volume fractions.
5-7
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tories with relative velocityDVW rel . At later times, however,
the relative mean square displacement varies less stro
with time, becoming approximately independent of time
the longest times measured, as the particle trajectories
come influenced by their neighbors. We represent this beh
ior by the phenomenological expression

^Dr rel
2 ~t!&5

^DVrel
2 &t2

11~t/tcl!
2

, ~22!

where tcl is the local crossover time, or the average tim
interval after which the ballistic motion is altered by inte
particle interactions. Fits of this empirical expression to o
data are shown by the solid curves in Fig. 6. This figu
shows that Eq.~22! gives an excellent description of th
crossover behavior, allowing accurate measurements of
DVrel5A^DVrel

2 & andtcl to be obtained.
In Sec. II, we emphasized that DAWS measu

^Dr rel
2 (t)& on a length scale determined by the ultraso

transport mean free pathl * . In Fig. 7, we plot the values o
l * as a function of volume fraction for the measurements

FIG. 6. Mean square displacement of the beads relative to t
neighbors at several volume fractionsf, along with fits of the phe-
nomenological function given by Eq.~22! to the data.

FIG. 7. The smallest values of the transport mean free pathl *
used in our experiments, performed at a frequency of 2.35 M
These data are compared with the average nearest-neighbor dis
between the particles.
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^Dr rel
2 (t)& shown in Fig. 6@27#. As expected,l * varies as

f21 @21,28#. These measurements ofl * are also compared
with the average center-to-center distance between nea
neighbor particles in the suspension, which is given appro
mately bydnn51.8af21/3 sincednn is equal to 2a for close
packing. At this ultrasonic frequency (f 52.35 MHz), l * is
similar in magnitude todnn throughout the entire range o
volume fractions, demonstrating the very short length sca
at which the relative motion of the scattering particles can
measured in DAWS.

By lowering the ultrasonic frequency belowf
52.35 MHz, we are able to investigate the dependence
the relative velocity fluctuations on length scale, sincel *
increases at lower frequencies as the wavelength beco
larger than the particle size. As discussed in Sec. II@see Eq.
~19!#, varying l * allows us to probe the instantaneous spa
correlations of the particle velocities, since we can meas
DVrel at early times before the correlations have begun
decay temporally. Typical data for two different volume fra
tions are illustrated in Fig. 8, which showsDVrel , normal-
ized by the average fluid flow velocityVf , as a function of
l * , normalized by the bead radius. Also shown, by the dot
horizontal lines, isA2 times the root mean square veloci
Vrms, measured using DSS, and again normalized by
fluid flow velocity Vf . At small particle separations,DVrel is
proportional to the square root of the average interpart
separationl * , giving a direct measure of the correlations
the particle velocities. At larger particle separations the
locity correlations weaken, and the relative velocity of t
particles approachesA2Vrms, the value expected for particle
that move randomly. This behavior is well described by E
~19! if we assume that the velocity correlation function d
cays exponentially with distance, so that

DVrel

DVrms
5A2@12exp~2 l * /j!#1/2, ~23!

ir

z.
nce

FIG. 8. The rms relative velocity, normalized by the fluidizatio
velocity, as a function ofl * /a, which determines the average pa
ticle separation~in units of the particle radiusa) at whichDVrel is
measured. Experimental results for two volume fractions are sh
~symbols! along with fits of Eq.~23! to the data~solid curves!. The
dotted horizontal lines represent the rms velocity of the partic
measured using dynamic sound scattering, and the dashed
show theAl * /a dependence seen at small particle separations.
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wherej is the instantaneous velocity correlation length. T
solid lines in Fig. 8 show the results of fitting of Eq.~19! to
the data with only a single fitting parameter, namely,
correlation lengthj, whose magnitude can then be det
mined. Note that both theAl * behavior seen in our data a
short length scales and the crossover to a relative velo
that is independent of length scale at longer length scales
well characterized by Eq.~23!. Thus, by combining measure
ments of the relative velocity as a function of length sc
using DAWS with measurements of the rms velocity us
DSS, we are able to determine the spatial extent of the
relations in the particles’ motion and indirectly measure
velocity correlation function.

To further demonstrate that the length scale depende
of the relative velocity fluctuations is well described by E
~23!, Fig. 9 shows our data for all the volume fractions i
vestigated in the 4503178312.8 mm3 cell. In this figure,
we normalize the relative velocity for each volume fracti
by the corresponding value ofVrms, and the average particl
separation by the measured correlation lengthj. Remarkably,
all the data collapse onto a single curve, which is given
Eq. ~23! for effective particle separations spanning nea
two orders of magnitude. This scaling plot indicates that
velocity correlation function decays exponentially with d
tance over the entire range of particle separations inve
gated, allowing the velocity correlation length to be reliab
measured from the length scale dependence ofDVrel .

Furthermore, by using theAl * dependence of the relativ
velocity to interpolate or extrapolateDVrel to the nearest-
neighbor particle separation, we measure the local rela
velocity at the shortest distances over which the relative m
tion can be defined. Figure 10~a! shows the local relative
velocity, normalized by fluid velocityVf , as a function of

FIG. 9. The relative velocity, normalized by the rms veloci
plotted as a function of the particle separation, normalized by
measured correlation length. Data from all the samples fall onto
same curve, governed by an exponentially decaying correla
function @Eq. ~23!#.
06660
e

e
-

ty
re

e

r-
e

ce
.

y

e

ti-

e
-

volume fraction. As in Fig. 9, these data were taken in one
our cells that is about 30 bead radii thick. Figure 10~a! shows
that the relative velocity is large, even at this shortest len
scale, and increases approximately asf1/3 up to a volume
fraction of 0.40. At higherf, DVrel starts to decrease aga
as the particle flows become more strongly correlated. T
second quantity that can be directly measured from the t
dependence of̂Dr rel

2 (t)& is the local crossover timetcl ,
which we plot in Fig. 10~b! as a function of the volume
fraction. Here we have normalizedtcl by the characteristic
time taken by the fluid to travel a bead radius,t f5a/Vf .
This figure shows that the ratiotcl /t f'1/2 throughout the
entire volume fraction range; thus, the particles move bal
tically relative to each other for quite short times durin
which the fluid has, on average, only moved a distance eq
to one half the particle radius. These results fortcl also allow
us to determine a length scale for local motions in fluidiz
suspensions,Ddsep5DVreltcl /A3; this length scale corre
sponds to the average change in the separation of adja
particles before their trajectories become modified by int
particle interactions, and is typically about one-fourth of t
particle radius.

These results for the local relative velocity also allow
to measure the average strain rateḠ at the average neares
neighbor separation, as shown by the solid symbols in F
11~a!. Again we normalizeḠ by t f5a/Vf , thereby account-
ing for the fact that the fluidization velocity sets the scale
the strain rate as well as for the velocity fluctuations. Figu
11~a! shows that the local strain rate is large, indicating th
there are very considerable local rearrangements of the

e
e
n

FIG. 10. ~a! The root mean square relative velocity at th
nearest-neighbor separation, normalized by the fluid flow velo
and plotted as a function of volume fraction for three differe
sample thicknesses. The solid line shows thef21/3 dependence ex-
hibited by the data up to a volume fraction of about 0.4.~b! The
local crossover timetcl divided by the time for the fluid to travel a
single bead radius,a/Vf . The horizontal line shows that the no
malized crossover time is'0.5.
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ticles over short times. Physically, sincet f'2tcl @c.f., Fig.
10~b!#, the normalized strain rateḠa/Vf corresponds to
roughly twice the maximum strain that any local cluster
nearest-neighbor particles experiences before each part
direction of motion is altered. At low volume fractions, th
normalized strain rate at the nearest-neighbor separation
creases more rapidly withf than the relative velocity, re
flecting decrease in particle separation with volume fracti
Up to f'0.4, Ḡa/Vf varies'f2/3, but it eventually drops
off at even higher volume fractions as the confining effect
the neighboring particles causes the flows to become m
correlated.

Finally, we show in Fig. 11~b! how the instantaneous co
relation length varies with volume fraction for the same fl
idized bed with thickness 30a. At low volume fractions (f
,0.2) we find a'f21/3 dependence on volume fraction
which means that the number of particles in a correlat
volume remains approximately constant at different volu
fractions. At these low volume fractions, the magnitude a
volume fraction dependence of our data are in agreem
with the extrapolation of particle imaging velocimetry e
periments on sedimenting suspensions@30#, measured at
very low volume fractions and a much lower particle Re
nolds number. At high volume fractions, however, the cor

FIG. 11. ~a! The local average strain rate at the nearest-neigh
separation, normalized bya/Vf . ~b! The instantaneous correlatio
length, normalized by the particle radius, measured using DA
and DSS, and plotted versus volume fraction for two sample th
nesses. The lines are power law fits to the data.
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y
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lation length increases quite rapidly withf, exhibiting an
approximately linear dependence on volume fraction. T
dependence has the interesting and somewhat surprising
sequence that the number of particles in a correlation volu
increases with volume fraction asf4, so that the correlation
volume contains about 40 times more particles atf50.5
than it does atf50.2.

V. CONCLUSIONS

By taking advantage of recent progress in understand
the diffusive propagation of ultrasound in strongly scatter
media, we have developed the ultrasonic technique ca
diffusing acoustic wave spectroscopy~DAWS!. This tech-
nique uses multiply scattered ultrasonic waves to investig
the dynamics of systems in which traditional imaging tec
niques break down and other approaches are needed t
vestigate their properties. In this paper, we describe both
theoretical foundations and practical implementation
DAWS. As an example of the possible applications of th
technique, we show how it can be used to study the comp
flow behavior of particulate suspensions, focusing on flu
ized suspensions of millimeter-sized particles in a liquid.
this type of system, DAWS gives a sensitive approach
measuring both the relative motion of the scatterers and
strain rate over a wide range of length scales, down to
distance between nearest-neighbor particles. In addit
DAWS can measure the time intervaltcl before interparticle
interactions modify the relative trajectories of the particle
giving information on the local length scale of the partic
dynamicsDdsep, which is equal to the average change in t
separation between nearest-neighbor particles duringtcl .
Since DAWS measures the relative motion of the scatte
over a range of length scales, it also probes the spatial
relations of the particle velocities; when combined with me
surements of the rms particle velocity using dynamic sou
scattering, we have shown how DAWS can be used to m
sure the velocity correlation function and hence determ
the velocity correlation lengthj. These data for fluidized
suspensions demonstrate the considerable potential of
technique for determining important information about t
dynamics of strongly scattering materials, information th
can be used both in fundamental studies of their dyna
properties as well as in practical applications in the non
structive characterization of materials.
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